图片 3

遗传发育所等通过统计模拟阐释侧生器官对干细胞的上报调整,叶片是怎么着长出正面与反面面包车型大巴

干细胞是器官的来源,但器官能否反馈调控干细胞?分化细胞对干细胞的反馈有助于动态维持干细胞的稳态,使干细胞的数量和活性适应内源变化。动物中,分化细胞通过分泌可扩散的信号分子反馈于干细胞。植物中是否存在反馈调控,在分子水平如何实现反馈调控?

到此为止,事情似乎就已经很圆满了:茎尖的干细胞不断出现生长素的高点,每个高点处产生一片叶;叶片发生后,生长素从近轴面运输回到茎尖,一方面导致近轴面生长素含量低于远轴面,导致近轴面发育,一方面供茎尖干细胞产生下一片叶片。

中国科学院遗传与发育生物学研究所农业资源研究中心刘西岗研究组以拟南芥花分生组织为研究材料,利用分子及细胞生物学、遗传学和生化分析结合生物信息学,系统研究生长素反应因子AUXIN
RESPONSE
FACTOR3介导生长素及转录因子AGAMOUS对细胞分裂素活性调节进而调控FM维持及分化的分子机制。

生长素运输介导侧生器官反馈调控茎尖干细胞稳态

图片 1依安·萨塞克斯在即将发生的叶片原基(I1
c)和茎尖(A)之间切开一个小口,但是底端仍与整体相连。图片:Sussex
(1951) Nature 167:651-652.

高等植物中,植物体所有胚后发育的组织和器官都来源于各级分生组织。花分生组织(floral
meristem,
FM)产生及维持是花器官生成及发育的前提,而FM活性的程序性终止(FM
determinacy)导致的细胞分化是后续的生殖生长及世代交替的保证,在实际应用中能够保证农作物的产量。分生组织的维持及分化由特定的蛋白组分如转录因子,多肽信号和受体及植物激素如生长素和细胞分裂素共同调控,但植物激素间以及激素与蛋白间互作调控FM维持及分化的机制未有系统研究。

中国科学院遗传与发育生物学研究所焦雨铃研究组与北京大学国际数学研究中心张磊研究组,通过学科交叉研究发现生长素长距离运输在侧生器官对茎尖干细胞的反馈中扮演重要角色。研究发现,茎尖干细胞区域的生长素含量负调控干细胞平衡,高生长素含量导致干细胞分化加速。计算模拟表明,侧生器官原基外运的生长素能够抑制茎尖的生长素外运,从而维持茎尖生长素浓度的稳态,进而维持干细胞的稳态。遗传分析和显微手术实验验证了模型结论,发现在叶片、花原基发育不良的突变体中或在切除原基后,茎尖干细胞区域生长素外运加强,生长素浓度降低,茎尖干细胞增多。增大的干细胞团进而产生更多侧生器官。该模型解释了侧生器官突变体中茎尖干细胞区域增大,特别是周期性变化的表型。该研究揭示了植物干细胞稳态的维持与动物干细胞的稳态维持在分子水平采取了不同的策略。

 

分生组织维持及分化中ARF3介导生长素及AGAMOUS调控细胞分裂素的工作模型

图片 2

几天后,他发现这些在近轴面与茎尖分开的叶片很多无法进行正常的近-远轴极性发育。更为显著的是,近-远轴极性发育异常导致叶片无法侧向展开,最终得到的是棒状的叶片,而且叶片各个方向都和远轴面相似。也有些叶片成为“喇叭叶”。这些喇叭叶的顶端像喇叭一样是圆锥形的,喇叭口以下和棒状叶类似,没有极性。萨塞克斯由此推测:茎尖的干细胞产生一个信号,指导叶片近轴面形成。当手术切割阻断这个信号的时候,默认的远轴面发育程序启动,导致叶片只有远轴面发育。这个实验被写入了发育生物学的教科书,而这个信号就被称为了Sussex信号。

论文链接

1月22日,相关研究结果发表在Developmental
Cell
上。研究工作得到了国家自然科学基金、国家重点基础研究发展计划、中组部“万人计划”和植物基因组学国家重点实验室等的资助。

也有些基因直接或间接地影响特定的小RNA (microRNA, miRNA
和一种特殊的trans-acting short interfering RNA, tasiRNA)
。这些小RNA是植物自身基因组编码表达的,它们的出现比较偶然,比如miRNA最初可能来源于基因内部核苷酸突变导致的反向转录,但在漫长的进化过程中这些miRNA已经被整合到植物的发育程序中,像许许多多的转录调控因子一样,成为植物发育网络中不可或缺的枢纽。小RNA能够直接作用于序列互补结合其它基因从而抑制这些靶基因的转录、翻译或是促进靶基因的降解。叶片发育过程中,在近-远轴面分别表达不同的小RNA,作用于编码转录因子的基因,以使这些靶基因只能在叶片的一侧分布。

1月25日,研究结果在线发表在Plant
Cell
上。研究工作得到了国家自然科学基金委,国家重点研发计划,国家重点基础研究发展计划和中科院“百人计划”及植物细胞及染色体工程重点实验室的资助。

那么,自然为什么要选择这么复杂的调控方式呢?对这些基因调控网络的数学建模和模拟显示,复杂的调控更为稳定,而不容易受到环境条件轻微变化和植物内单个信号通路突变的影响,一种方式失败了,另一种方式可以非常迅速地弥补上来。叶片两面不同的发育也许同样需要多种方式来调控,而这些多种方式的共存并立使得叶片的两面发育更稳定。否则,也许我们会频繁看到不正常的叶片出现,而这样的植物由于光合效率受累也容易出现其它的发育问题。至于这些通路之间到底存在着怎样一种和谐而对立的关系,什么机制保障了它们之间有序有效的协作,还有待分子遗传学研究带给我们进一步的答案。(编辑:老猫)

研究表明,细胞分裂素的内稳态对于FM的维持及分化非常重要。生长素可以通过促进ARF3的表达来抑制细胞分裂素的活性进而促进FM的分化。在这个过程中ARF3可以直接抑制细胞分裂素的合成基因IPT3/5/7的表达,同时间接抑制合成基因LOG家族基因的表达,导致细胞分裂素含量的降低。在分生组织组织中心(organizing
center,
OC),ARF3可以直接抑制细胞分裂素受体AHK4的表达,从而降低OC区细胞分裂素的活性,导致干细胞活性维持基因WUSCHEL表达的程序化终止。同时对花器官决定及FM分化起关键作用的转录因子AG对于ARF3的表达有动态调节,在花发育的3-4期,AG通过抑制ARF3的表达,维持细胞分裂素的活性,促进细胞周期基因的表达,保证细胞的分裂从而保证分生组织的维持及花器官的产生,在花发育的5-6期,AG和生长素一起促进ARF3的表达来抑制细胞分裂素活性,保证FM的程序化分化。

我们最新的研究结果表明,正是PIN蛋白介导的生长素运输产生了叶片极性发育信号,信号的化学本质就是生长素。萨塞克斯根据手术实验得到的推论是正确的,然后也有错误的地方。信号分子(生长素)不是由茎尖干细胞向叶片的近轴面扩散,而是通过主动运输从叶片运向茎尖干细胞。如此看来,萨塞克斯的猜测把方向弄反了。近轴面不是由于积累了生长素,而是由于生长素含量低,而导致近轴面发育的。如果提高了近轴面的生长素含量,近轴面就会发育成为远轴面,从而形成喇叭叶或者棒状叶——和萨塞克斯实验一样的结果!生长素的近-远轴差异非常短暂,叶片发生几天后就会消失,而正是在这几天内,近-远轴分化完成。运向茎尖干细胞的生长素不仅导致了近轴面低生长素区域的建立,也被茎尖干细胞用来起始后续叶片的发生。叶片的发生伴随着生成素高点的依次形成。

图片 3

然而,分子遗传学的研究告诉我们,实际上植物中的近-远轴调控要更为复杂;而以往的分子遗传学研究也确实找出了不少在近-远轴分化中起到重要作用的调控因子。如果将一个植物体比作一辆汽车,植物体内的基因就是一个个汽车零件。
 当汽车的某个零件被卸掉之后,汽车无法转向,就可以得出结论该零件为汽车转向所必须。而分子遗传学研究正是通过类似的方法来找出植物特定发育过程中的必须“零件”——当一些基因通过随机诱变的方法被“卸掉”,如果出现叶片极性发育的问题,比如植物长出喇叭叶,就说明被卸掉的基因在叶片极性发育过程中起作用。如果我们再能够往回追溯找出是哪个基因被“卸掉”,那么我们就知道这个基因能够调控叶片极性发育。

发表评论

电子邮件地址不会被公开。 必填项已用*标注

标签:
网站地图xml地图